Lecture 19: Embryo Development
Animal Science 434
John Parrish

Timing of Insemination

<table>
<thead>
<tr>
<th>Species</th>
<th>Time of Ovulation</th>
<th>Optimal Insemination Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>29 hr after start of estrus</td>
<td>End of estrus (12 hr after first seen in estrus)</td>
</tr>
<tr>
<td>Ewe</td>
<td>End of estrus</td>
<td>End of 1st day or start of 2nd day of estrus</td>
</tr>
<tr>
<td>Sow</td>
<td>End of estrus</td>
<td>End of 1st day or start of 2nd day of estrus</td>
</tr>
<tr>
<td>Mare</td>
<td>1-2 days before end of estrus</td>
<td>Every other day beginning day 3 of estrus</td>
</tr>
</tbody>
</table>

Errors in Fertilization

- **Polyspermy - polyandry**
 - Multiple sperm penetration
 - Invertebrates
 - Excess sperm eliminated because sperm centriole contributes to first embryonic cleavage spindle
 - Mammals
 - Sperm centriole not essential so development continues but fails early to mid-pregnancy due to multiploidy
 - Occurs most often in aged oocytes due to failure of zona block to polyspermy

- **Polygyny**
 - Multiple maternal pronuclei + 1 paternal pronuclei
 - Artificially created only
 - Suppress extrusion of the PBII

- **Androgenote**
 - Union of 2 paternal pronuclei
 - Artificially created only
 - From pronuclear exchange

- **Gynogenote**
 - Union of 2 maternal pronuclei
 - Artificially created
 - Induced oocyte activation and suppression of PBII extrusion

- **Parthenogenesis**
 - Activation of the oocyte without a sperm
 - Embryo is either haploid or gynogenesis occurs to form diploid
 - Platties - sperm activates but then gynogenesis occurs and sperm extruded from embryo

Errors in Fertilization (cont.)

Oocyte Development and Fertilization

- **LH Surge** (0 hr)
- **Primary Oocyte**
 - **GVBD** (8 hr)
 - **MPF**
- **Metaphase I**
- **Metaphase II** (21 hr)
- **Secondary Oocyte**

- **Ovulation** (29 hr)
Zona Pellucida

Oocyte

Ca^{2+}

Perivitelline Space

Sperm Penetration of the Zona Pellucida and Fusion with the Oocyte (30 hr)

Embryo Development in the Bovine

- **4 cell (76 hr, day 2)**
- **8 cell (90 hr, day 3)**
- **16 cell (120 hr, day 4)**
- **Hatched Blastocyst (day 9-11)**
- **32 cell Morula (day 5-6)**
- **Early Blastocyst (day 7-8)**
- **Tight Morula (day 6-7)**
- **Expanded Blastocyst (day 8-10)**
- **Blastocyst (day 7-9)**
- **Hatched Blastocyst (day 9-11)**
- **Zygote (34 hr, day 1)**

Fertilization to Cleavage

- **Zygote**
- **Pronuclei**
- **Polar Body**
- **Blastomere**
- **Zona Pellucida**
- **Perivitelline Space**

Fertilization to Cleavage

- **Imprinting**
- **Maternal Gene Control**
- **Long Cell Cycle**

Imprinting

- **Sperm Pronucleus**
- **Egg Pronucleus**

Imprinting

- **Androgenote**
- **Gynogenote**
Gene Control of Development

Maternal Gene Control

- Oocyte Growth
- LH Surge
- Fertilization
- Cleavage

- Transcription
- Translation
- No transcription
- Translation
- Post-Translation
- Translation
- Post-Translation
- Transcription
- Post-Translation
- Translation
- Post-Translation

Embryonic Gene Control

Fertilization to Cleavage

Maternal Gene Control

- Long Cell Cycle
- Penetration to Cleavage
- 32 hour (Bovine)

Precompaction Cleavage

- Cell size decreases
- Cell cycle
- Embryonic gene control
- Asynchrony of cell divisions
- Movement into Uterus
- Early pregnancy factor
Precompaction Cleavage

- Cell size decreases
- Cell cycle
- Asynchrony of cell divisions
- Embryonic gene control
- Movement into Uterus
- Early pregnancy factor

Cell Cycle Lengths

1st Cell Cycle (zygote → 2 cell)
- G1
- S
- G2 + M
- Total = 32 hours

2nd Cell Cycle (2 cell → 4 cell)
- G1 (shortened)
- S
- G2 + M
- Total = 13 hours

Precompaction Cleavage

- Cell size decreases
- Cell cycle
- Embryonic gene control
- Asynchrony of cell divisions
- Movement into Uterus
- Early pregnancy factor

Asynchronous Cleavage - Inside Outside Theory

If a marked blastomere is placed into the interior of a 8-cell embryo, it and its progeny become part of the ICM.

If a marked blastomere is placed on the outside of a 8-cell embryo, it and its progeny become part of the trophoderm.
Asynchronous Cleavage Use

- Create embryos from different species
 - Placenta from one species
 - Host mother
 - Embryo from some other species
 - Donor mother

Precompaction Cleavage

- Cell size decreases
- Cell cycle
- Asynchrony of cell divisions
- Embryonic gene control
- Movement into Uterus
- Early pregnancy factor

Gene Control of Development

Maternal Gene Control

- Transcription
- Translation

LH Surge

Embryonic Gene Control

- Transcription
- Post-Translation

Fertilization

Cleavage

In vitro blocks to development often occur here!!!!!!

Transition from Maternal to Embryonic Gene Control

<table>
<thead>
<tr>
<th>Species</th>
<th>First begins</th>
<th>Development is dependent on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>1 cell</td>
<td>2 cell</td>
</tr>
<tr>
<td>Rabbit</td>
<td>2 cell</td>
<td>8 cell</td>
</tr>
<tr>
<td>Pig</td>
<td>4 cell</td>
<td>8 cell</td>
</tr>
<tr>
<td>Cattle</td>
<td>4 cell</td>
<td>8-16 cell</td>
</tr>
<tr>
<td>Sheep</td>
<td>8 cell</td>
<td>16 cell</td>
</tr>
<tr>
<td>Human</td>
<td>4 cell</td>
<td>8 cell</td>
</tr>
</tbody>
</table>

Precompaction Cleavage

- Cell size decreases
- Cell cycle
- Asynchrony of cell divisions
- Embryonic gene control
- Movement into Uterus
- Early pregnancy factor

Embryo runs out of key factors coded for by maternal mRNA

Cell Cycle Length Increases

Pause in G1

32 hours

13 hours

15 hours

30 hours
Movement into the Uterus

- Occurs around day 4
- Cause
 - Change in estrogen \(\rightarrow\) progesterone

Precompaction Cleavage

- Cell size decreases
- Cell cycle
- Asynchrony of cell divisions
- Embryonic gene control
- Movement into Uterus
- Early pregnancy factor

Early Pregnancy Factor

- Found at 24 - 72 hours after fertilization
 - Mice, hamster, sheep, cattle, swine, human
- Seen only in viable pregnancy
 - More recent experience in cattle may not agree with this
- Function
 - Sensitize the uterus to implantation
 - Basis for early pregnancy kit in cattle

Morula to Blastocyst

- Polarization
- Compaction

Polarization

- Polar Blastomeres
- Non-polar Blastomeres
- Microvilli

Polarization (cont.)

- Gap Junctions
- Tight Junctions
Cell Linage

- Polar Cells
- Non-polar Cells

- 2 polar cells
- 1 polar
- 1 non-polar
- 2 non-polar

Compaction

- Occurs at fixed time after fertilization
- Membranes are very close and begin to flatten. Resulting in loss of the round cell outlines.
- Differentiation event
- Genome controlled and involves microtubules and microfilaments.

Blastocyst Formation and Hatching

- Blastocoel formation
- Hatching

Blastocoel Formation

- Morula
- H₂O
- Na⁺
- Tight Junctions
- Gap Junctions

Blastocoel Formation

- Early Blastocyst
- H₂O
- Na⁺
- Tight Junctions
- Gap Junctions
Blastocyst Formation and Hatching

- **Blastocoel formation**
 - not dependent on:
 - Cell number
 - Cell division
 - Embryonic genome expression required
- **Hatching**

- Enzymatic digestion of zona
 - Plasminogen and plasminogen activator made by embryo
 - Softening of zona by uterine enzymes
- Increase in size of blastocyst due to water pumping
 - Most important
 - Day 9-11 in cattle, 6 in swine, and day 7-8 in horses or sheep

Formation of Twins

- **Dizygotic**
 - Not identical
 - Double ovulation
- **Monozygotic**
 - Identical
 - Several potential mechanisms

Formation of Monozygotic Twins

- Siamese Twins