Cheesemaking with Sheep Milk

Stephanie Clark, Ph.D.

Iowa State University
Department of Food Science and Human Nutrition
Contents

- Cheesemaking terminology
- Chemistry and microbiology of cheese milk
- Steps in cheesemaking
- Sheep milk chemistry
- Cheesemaking with sheep milk
- Questions
Cheesemaking Terminology
Cheesemaking terminology

- Ash
- Culture/starter culture
- Chymosin
- Casein
- Whey
- TA
- pH
Culture/starter culture

- **Starter cultures** are lactic acid bacteria that
 - “start” the fermentation
 - convert lactose to lactic acid and other products
 - contribute to flavor, body and texture of cheese

- **Mesophiles**
 - “like” middle temperatures (68-111°F)
 - used for Cheddar, Jack, Cottage, Gouda and Blue

- **Thermophiles**
 - “like” high temperatures (111-140°F)
 - used for Italian style cheeses
Culture/starter culture

- **Adjunct cultures**
 - are added intentionally to cheese milk
 - work later in the process
 - contribute to flavor, body and texture of cheese

- **Adventitious bacteria** (nonstarter lactic acid bacteria)
 - enter the cheesemaking process at various points and contribute to (positively or negatively) cheese quality
Cheesemaking terminology

- **Titratable acidity (TA)** measures the **AMOUNT** of acid in a volume
 - A base (NaOH) is used to titrate to an end point (pink color change)
 - **Apparent acidity** measures fresh milk citrates, phosphates, proteins
 - **Developed acidity** measures lactic acid (fermentation)

- **pH** measures the **CONCENTRATION** of hydrogen ions (H+) in a solution
 - Acid/acidic conditions are below 7
 - 7 = neutral
 - Base/basic conditions are above 7
Milk proteins

During cheesemaking >>>>>> Whey

<table>
<thead>
<tr>
<th>Caseins</th>
<th>Whey Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make up ~ 80% of protein</td>
<td>About 20% of milk protein</td>
</tr>
<tr>
<td>Sensitive to acid/stable to heat</td>
<td>Sensitive to heat/stable to acid</td>
</tr>
<tr>
<td>α_{s1}-casein</td>
<td>β–lactoglobulin</td>
</tr>
<tr>
<td>α_{s2}-casein</td>
<td>α–lactalbumin</td>
</tr>
<tr>
<td>"sensitive" to Ca++</td>
<td>Other more minor ones</td>
</tr>
<tr>
<td>β-casein</td>
<td></td>
</tr>
<tr>
<td>Kappa-casein</td>
<td></td>
</tr>
<tr>
<td>stable to Ca++</td>
<td></td>
</tr>
</tbody>
</table>
Chemistry and microbiology of cheese milk
High quality cheese making

- **Begins with high quality milk**
 - From healthy animals
 - No inhibitory substances (antibiotics)
 - Cooled to less than 45°F (7°C) within 2 h of collection
 - Fresh (stored < 48 h)
 - Low bacteria levels
 - Normal somatic cell counts
 - Stainless steel equipment, pipes and fittings
 - Heat treatment??
Heat treatment of cheese milk?

- **Raw?**
 - Cheeses will likely have native flavors
 - Native microflora may include pathogens
 - Must be aged a minimum of 60 days at or above 35°F

- **Heat treated?**
 - Inactivates some pathogens, enzymes and spoilage microorganisms
 - Treated the same way (legally) as raw milk
Heat treatment of cheese milk?

- **Pasteurized?**
 - Flavors result from starter cultures and adventitious bacteria
 - Not required for aged cheeses
 - Required by law for sale of fresh cheeses
 - *Note: Do not homogenize cheese milk*

KEY POINT:

Every step of the process, from animal to consumer, influences the safety and quality of the end product.
High quality cheese making

- **Requires hygiene and sanitation**
 - Properly trained employees
 - Hair nets and beard nets
 - Clean and sanitized hands (gloves)
 - Foot baths
 - Appropriate chemicals and usage
 - Chlorinated alkaline cleansers
 - Acid cleaners
 - Sanitizers (sodium hypochlorite, etc.)
 - Time, temperature, concentration and agitation
High quality cheese making

- **Proceeds with high quality ingredients and supplies**
 - Starter culture
 - Coagulating enzyme (chymosin)
 - Molds (both microbial and physical)
 - Salt
 - Other inclusions (herbs, fruits, nuts)

- **Involves good record-keeping**
 - Keep track of failures along with successes
The Steps in Cheesemaking
The steps in cheese making

- Place high quality milk into recently cleaned and sanitized vat
 - Gradually raise temperature to target for culture

- Gently agitate and add culture
 - Note time and pH or TA
 - Ripen (for recommended time)
The steps in cheese making

What’s happening, chemically, in the cheese vat?
Milk Protein Chemistry

Casein sub-micelle
Ca\(^{2+}\) phosphate
Kappa casein

\(\alpha_{s1}\)-casein
\(\alpha_{s2}\)-casein
\(\beta\)-casein

Casein Micelle

- Casein sub-micelle
- Calcium phosphate
- Kappa casein
Milk Protein Chemistry

Casein Micelle

Native pH of milk (~6.7)
Lactose Fermentation Chemistry

pH 4.6
Coagulation Chemistry
The steps in cheese making

- **Add coagulating enzyme and stop agitation**
 - Note time

- **Check curd**
 - Cut curd (size depends on cheese type)
 - note time
 - Heal (rest recommended time)
But cheese makers are sometimes impatient...
Lactose Fermentation PLUS Coagulating Enzyme Chemistry

pH 6.5

Chymosin
Coagulation Enzyme Chemistry
The steps in cheese making

- **Begin gentle agitation of curd**
 - Note time and pH/TA
 - Heat/cook/stir curd (depends on cheese type)
 - Turn off heat at target temperature and agitate until target time (note time and pH/TA)
The steps in cheese making

- **Drain whey**
 - May be incremental
 - May include wash step

- Subsequent steps vary according to cheese type
Defining steps in cheese making

- **Feta**
 - Mold/hoop
 - Salt/brine

- **Cottage**
 - Rinse curds with acidified, chlorinated water 3X
 - Add cream dressing to curd (about 50:50)
Defining steps in cheese making

- **Blue-veined mold-ripened varieties**
 - Inoculate with mold spores
 - Mold/hoop
 - Aerate with needles
 - Age in high relative humidity environment

- **Camembert-style mold-ripened varieties**
 - Mold/hoop
 - Spray surfaces with mold spores
 - Age in high relative humidity environment
Defining steps in cheese making

- **Cheddar and Jack types**
 - Cheddar
 - Mill (if cheddared)
 - Salt
 - Mold/hoop
 - Press
 - Age
Defining steps in cheese making

- Mozzarella and Provolone styles
 - Stretch
 - Brine
The steps in cheese making

- **Package**
 - May include plastic, wax, etc.

- **Age/ripen**
 - All raw milk cheeses must be aged at least 60 days at 35°F or greater
 - Fresh cheese (pasteurized milk) may be sold right away
Sheep Milk Chemistry
Sheep Milk Chemistry

Milk chemistry compared among species

<table>
<thead>
<tr>
<th></th>
<th>Water (%)</th>
<th>Lactose (%)</th>
<th>Fat (%)</th>
<th>Protein (%)</th>
<th>Ash (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow milk</td>
<td>87.5</td>
<td>4.9</td>
<td>3.6</td>
<td>3.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Goat milk</td>
<td>87.0</td>
<td>4.5</td>
<td>4.1</td>
<td>3.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Sheep milk</td>
<td>80.9</td>
<td>5.3</td>
<td>7.0</td>
<td>5.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Milk Fatty Acid Chemistry of Species Compared

<table>
<thead>
<tr>
<th></th>
<th>Cow</th>
<th>Goat</th>
<th>Sheep</th>
<th>Buffalo</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated total</td>
<td>2.08</td>
<td>2.67</td>
<td>4.60</td>
<td>4.60</td>
<td>2.01</td>
</tr>
<tr>
<td>4:0</td>
<td>0.11</td>
<td>0.13</td>
<td>0.20</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>6:0</td>
<td>0.06</td>
<td>0.09</td>
<td>0.14</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>8:0</td>
<td>0.04</td>
<td>0.10</td>
<td>0.14</td>
<td>0.07</td>
<td>-</td>
</tr>
<tr>
<td>10:0</td>
<td>0.08</td>
<td>0.26</td>
<td>0.40</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>12:0</td>
<td>0.09</td>
<td>0.12</td>
<td>0.24</td>
<td>0.17</td>
<td>0.26</td>
</tr>
<tr>
<td>14:0</td>
<td>0.34</td>
<td>0.32</td>
<td>0.66</td>
<td>0.70</td>
<td>0.32</td>
</tr>
<tr>
<td>16:0</td>
<td>0.88</td>
<td>0.91</td>
<td>1.62</td>
<td>2.00</td>
<td>0.92</td>
</tr>
<tr>
<td>18:0</td>
<td>0.40</td>
<td>0.44</td>
<td>0.90</td>
<td>0.68</td>
<td>0.29</td>
</tr>
<tr>
<td>Monounsaturated total</td>
<td>0.96</td>
<td>1.11</td>
<td>1.72</td>
<td>1.79</td>
<td>1.66</td>
</tr>
<tr>
<td>16:1</td>
<td>0.08</td>
<td>0.08</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>18:1</td>
<td>0.84</td>
<td>0.98</td>
<td>1.56</td>
<td>1.57</td>
<td>1.48</td>
</tr>
<tr>
<td>20:1</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
</tr>
<tr>
<td>22:1</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>trace</td>
</tr>
<tr>
<td>Polyunsaturated total</td>
<td>0.12</td>
<td>0.15</td>
<td>0.31</td>
<td>0.15</td>
<td>0.50</td>
</tr>
<tr>
<td>18:2</td>
<td>0.08</td>
<td>0.11</td>
<td>0.18</td>
<td>0.07</td>
<td>0.37</td>
</tr>
<tr>
<td>18:3</td>
<td>0.05</td>
<td>0.04</td>
<td>0.13</td>
<td>0.08</td>
<td>0.05</td>
</tr>
<tr>
<td>18:4</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20:4</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
</tr>
<tr>
<td>20:5</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>trace</td>
</tr>
<tr>
<td>22:5</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>trace</td>
</tr>
<tr>
<td>22:6</td>
<td>trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>trace</td>
</tr>
</tbody>
</table>

Higher total fat
Sheep Milk Chemistry

- Compared to cow milk, sheep milk
 - Has lower water content
 - Has higher lactose, fat, protein and ash
 - Has more overall flavor
 - Higher proportion of short chain volatile fatty acids
 - Yields more cheese per pound of milk
 - Yields less whey
 - Cheese is more white
 - Beta-carotene converted to Vitamin A
Cheesemaking
with Sheep Milk
Cheese Making
with Sheep Milk

• Just about any cheese made out of cow or goat milk can be made out of sheep milk.

• Unique properties of sheep milk will be more pronounced in cheese.
Cheese Making
with Sheep Milk

- **Always remember the priorities**
 - Sanitation
 - Safety
 - Quality

- **Experiment**
 - Keep records
 - Set yourself apart

- **Enjoy!**
Questions?

Cheesemaking with Sheep Milk

Stephanie Clark, Ph.D.

Iowa State University
Department of Food Science and Human Nutrition

milkmade@iastate.edu
Sheep Milk Production

Comparative Performance of Breeds for Commercial Milk Production

<table>
<thead>
<tr>
<th>Rank</th>
<th>Breed</th>
<th>Average Milk Production, lb.</th>
<th>Milk production relative to E. Friesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>East Friesian</td>
<td>658</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>Lacaune</td>
<td>627</td>
<td>0.95</td>
</tr>
<tr>
<td>3</td>
<td>Dorset</td>
<td>409</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Unpublished data from the University of Wisconsin-Madison